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Abstract-Heat transfer and pressure drop responses of a corrugated duct with rounded comers were 
determined numerically. The duct boundaries were approximated by a cosine function. Computations were 
carried out for a Prandtl number of 0.7, in the Reynolds number range from 100 to 1000, for three assigned 
cormgation angles, and for four values of aspect ratios. Rounding of the comers resulted in a decrease of 
friction factor and Nusselt number. Heat transfer performance of a duct with rounded comers was 
compared to a straight duct and to a duct with sharp corners under three different constraints: fixed 
pumping power, fixed pressure drop, and fixed mass flow. The heat transfer rates decreased or increased 

depending on the specific conditions. 

INTRODUCTION 

CO~UGAT~ ducts are often utilized in the design of 
compact heat exchangers because of their efficient heat 
exchange capability. Izumi et al. [l, 21 reported 
numerical solutions for laminar flow and heat transfer 
in a corrugated duct with two right-angle bends and 
investigated the effect of bending angle on the heat 
transfer and fluid flow characteristics. Amano f3, 41 
also studied corrugated ducts with right-angle bends 
numerically for both laminar and turbulent flows and 
compared the results with the experimental work by 
Izumi et al. [5]. The numerical solutions for cor- 
rugated ducts with periodically fully developed flow 
and heat transfer were reported by Izumi et ~1. [6] and 
Amano [7$ Asako and Faghri [S] extended the latter 
problem for channels with an arbitrary bend angle by 
employing a coordinate transformation methodology 

w. 
With the exception of a recent paper by Sparrow 

and Hossfeld [lo] who measured pressure drop and 
heat transfer rates for a periodically corrugated duct 
with rounded corners, there is no single investigation 
to study the effect of rounding of duct corners. This 
has motivated the present numerical simulation for 
periodic fully developed flow under constant wall tem- 
perature for a corrugated duct with rounded corners. 
Represen~tive results were carried out for a Prandtl 
number of 0.7 in the Reynolds number range from 

100 to 1000 for three corrugation angles of 15”, 30”, 
45” and for four aspect ratios. 

GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 

The problem considered in this study is schema- 
tically shown in Fig. l(a). As seen in this figure, 
the walls which form the duct are infinitely long in the 
y-direction. The geometry of the duct is specified by 
the cycle length (L), the width of the duct (H’), and 
the corrugation angle (8) which is the slope of 
the duct boundaries at positions y = L/4 and 3L/4. 
The deviation of the left wall from the y-axis 6(y) is 
expressed as 

6(y) = [(L/4)tan8][1-(2/n)cos(27cy/L)]. (1) 

The dashed lines in Fig. 1 (a) represent the duct bound- 
aries with sharp comers. These boundaries coincide 
with the approximated cosine boundaries at the posi- 
tions y = Lj4 and 3L/4. 

The fluid flow attains a periodic fully developed 
condition sufficiently far from the inlet. The general 
concepts of this ~~odically fully developed Aow and 
heat transfer are discussed in ref. [l 11. In such flows, 
the velocity field repeats itself at corresponding axial 
stations in successive cycles. The pressure does not 
obey the same type of periodicity condition since it 
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NOMENCLATURE 

A, per-cycle heat transfer surface area 
B dimensionless per-cycle pressure 

gradient, equation (8) 
H’ duct width 
h, h, local and average heat transfer 

coefficients, equation (21) 
K thermal conductivity 
t axial length of a cycle 
ti total mass flow rate 
Nu, Nu, local and average Nusseit numbers, 

equation (24) 
P dimensionless periodic pressure, 

equation (8) 
p,p’ pressure and periodic pressure 

AP per-cycle pressure drop 
Pr Prandtl number 
q, Q local heat flux and per-cycle wall heat 

transfer rate 
RC? Reynolds number, equation (18) 
T dimensionless tem~rature 

t, tht & temperature, bulk temperature, and 
wall temperature 

U, Y dimensionless velocity components, 
u/(v;L). U/(V/L) 

X, Y dimensionless transverse and axial 
coordinates, .x/L, ,yjL 

x. y transverse and axial coordinates. 

Greek symbols 

fj per-cycle pressure gradient 
6, A deviation of wall and its dimensionless 

form, d(y)/L 
n corrugation angle 
n bulk temperature gradient parameter, 

equation (14) 

P density 
right-hand side of equation f 12) 

G, ‘P’, stream function [ = l” ” C’dq] and its 
value at the right wall. 

Subscripts 

f) corrugated duct with rounded corners 
corrugated duct with sharp corners 
straight duct. 

- 

decreases in the y-direction. Therefore, it is expressed approaches the wall temperature in the fully 
as 

P(.T y) = - P.Y -I-p’(n, y) 

where 4 is a constant, defined as 

developed region. A dimensionless temperature is 

(2) 
defined as 

where 
(3) 

and p’ behaves in a periodic manner from module to 

module as 

T(.x, y) = [t(x,y) - L”ll(Zh - t, ) (5) 

p’(x,y) =p’(.x,y+L) =p’(x,y+2L) = . . . (4) 
For a periodically thermally developed region, the 
dimensionless temperature satisfies the following 

For the case of the uniform wall temperature relationship: 
boundary condition, the fluid temperature T(.x,y) = T(x,y+L) = 7-(.X,y+2L) = . . (7) 

Therefore, the fully developed dimensionless tem- 
perature field repeats itself at corresponding axial sta- 
tions in successive cycles. 

The governing equations to be considered are the 
continuity, momentum, and energy equations. Con- 
stant the~ophysical properties are assumed and 
natural convection is excluded. The following dimen- 
sionless variables are used : 

x = x/L, Y = y/L, u = u/(v/L). v = c,l(v/LI, 

P = P’lP(VlW, B = jx/p(v/L)*. (8) 

Then, upon the introduction of the ~mensio~less 
variables and parameters, the governing equations 
take the following forms : 

PI 
(a) (b) 

ar/jax+aVj’i?Y= 0 

uaujaxt-v;;uja~= a2ulo’x2t~‘ujay’-api;x 
1. (a) Schematic diagram of a corrugated duct. (b) Lines 

of constant q and < in the physical domain. (10) 
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U = V = 0, T = 0 (t = t,). (15) 

At the inlet and outlet ends of the solution domain, 
periodic conditions are imposed. 

SOLUTION METHODOLOGY 

The solution methodology based on the coordinate 
transformation is fully described by one of the authors 
[9] and is well documented in earlier papers [8, 121. 
Specifically, the X, Y coordinates are transformed into 
g, 5 coordinates by the relationship 

where 

r) = X-A(Y), 5 = Y (16) 

A(Y) = W/L. 

In terms of the new coordinates, the values of rl on 
both wall boundaries take 0 and W/L, respectively. 
Then, the solution domain is defined by 0 < q < H’/L, 

0 < 5 < 1. Lines of constant rl and 5 are illustrated 
in Fig. l(b). The transformed governing differential 
equations are integrated over the control volume con- 
tained between lines rl = q,,q2 and 5 = ci, t2. The 
discretized procedure of the integrated equations is 
based on the power-law scheme of Patankar [13]. The 
pressure and velocities are linked by the SIMPLE 
algorithm of Patankar [13], and the discretized equa- 
tions are solved by using a line-by-line method [ 141. 

The numerical computations were performed for 
Prandtl number of fI = 15”, 30”, If the 

of both 
in the H’ a function 

of0andLas 

H’ = (L/2) tan@. (17) 

Then the selected values of 
to tan6. of the 

B were selected in a way that the cal- 
culated Reynolds numbers are 100,200,500,700, and 
1000. 

The computations were performed with (18 34) 
grid points. These grid points were distributed in a 
non-uniform manner with higher concentration of 

to the 

x SO) 
and (34 66) grid points to 

of H’/L = 0.1443 and 30”. 
Three values of B 
were selected in a way that the calculated Rey- 
nolds numbers ranged from 100 to 

in Table 1. The in the 

x 34) and the fine mesh (34 66) 
were within and 7% at identical 

x 34) was chosen to 

be directed to the of 
the be defined as 

= 2riz/p 

where the mass flow rate ti is given by 

(18) 

s 
I’,= odrl. (19) 

II 

of interest is the of the 
It of practical 

to compare 

be expressed as follows : 

@~plL)~~ /@Wh = P/WWl W/L) 3. (20) 

Finally, the local heat transfer coefficient h and cycle 
average heat transfer coefficient h, will be defined as 

h = s/(&C&) 

hrn = Q/&(&V - GJ 
(21) 

where q is the local heat flux, A, is the per-cycle 
transfer surface area, Q is the heat transfer rate from 
both walls to the fluid per cycle, and t,- tb is the 
average bulk-to-wall temperature difference. The log- 
mean temperature difference is expressed as 

tw-fb = (r,-r&=,(1-$/( -6’idY) (22) 

where 

y = exp O’ldY. 
s 

(23) 

The Nusselt number expressions were obtained by 
assuming a log-mean temperature difference as fol- 
lows : 
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Table 1. Grid size effect on ReyneXds number and average Nusselt number 
.__ ____-. _. .” .““.” .,,. ~~~ .-.. ._ _._. 

18x34 26x50 34x66 
B Rf? hk Re /VU,” Ri? ‘Ma 

__. ~. .*-____,.__ . . . ~~~~.__ ..~_ .._ _. 

360 000 129.3 7.994 128.0 Y.041 127.5 8.057 
800 000 212.2 8.079 269.9 X.087 269.0 8.083 

4 500 000 1062 10.03 1049 9.593 1041 9.2% 
--~~ --.“” ..- ~ -. 

(af r&=83 

Nu = h(2H’)IK 

= [I -t(aA,‘aY)‘]” ‘(2H’/t)(rW/CJq> 

NM, = &(X)/K 

= -(&!&,A,) r’ laY(N.!L)[(RePr,2) 

i’ 

W,l. 
- (,W+aq’dY)P~Odq . 1 (24) 

0 

The streamline maps obtained from the solutions 
are presented in Fig. 2. These figures are for 
H’!L = 0.25 and 8 = 45”, and in the Reynolds num- 
ber range from about 80 to 1000. Results for the sharp 
cornered duct are also presented in Fig. 2(e). The 
contour interval AY/Yw is chosen as 0.1 for the core 
flow. The values of the contour line Y,/Yw on the left 
and on the right wails are 0 and 1, respectively. The 
contour interval Ay,P9, in the separation bubble is 
0.01. No separation bubbie can be seen at low Rey- 
nolds number Re < 1.50 (Fig. 2(a)). For Re > 1.50, 
a separation bubble can be s?en at the valley of the 
corner. As expected, the separation bubble increases 
in length with Reynolds number because the fluid is 
unable to turn sharply to follow the wall at higher 
Reynolds number (Fig. 2(d)). Although one sep- 
aration bubble can be seen for the round cornered 
duct, two separation bubbles can be seen at the valley 
of the sharp cornered duct (Fig. 2(e)). 

Representative results for the pressure drop ratios 
are plotted as a function of Reynolds number in Fig. 

3 with H’/L and 0 as curve parameters. These ratios 
arc determined numerically by dividing Ap of the 
corrugated duct into the corresponding values of the 
straight duct (‘lane Poiseuik flow) with an equal 
width H’. For this case, the mass flow rate in the 
corrugated duct and in the straight duct is the same. 
The dashed lines in Fig. 3 indicate the results far the 
sharp cornered duct. The pressure drop ratios for both 
the sharp and round cornered ducts are greater than 

FIG. 3. Comparison of pressure drops for corrugated and 
straight dI%cts. 
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B=30”.H’/L=0.4186 
1 I I I llllll 
'100 500 1000 

RP .._ 
FIG. 4. Comparison of pressure drops with experimental 

data. 

one, as expected. The pressure drop for the round 
cornered duct is less than that of the sharp cornered 
duct. It is noteworthy that the pressure drop for the 
round cornered duct of 6 = 45” is 80% (maximum) 
less than that of the sharp cornered duct at Re = 1000. 

The experimental data of Nishimura et al. [15] are 
compared with the present computation in Fig. 4. The 
experimental data are for a duct with W/L = 0.4643 
and 8 = 38.2” and the computational results are for 
ducts of H’/L = 0.5, 13 = 45” and for H’IL = 0.4186, 
0 = 30”. Even though direct comparison of the experi- 
mental and numerical results are not possible but the 
present computation is consistent with the experi- 
ment. 

Representative results for the local Nusselt number 
are presented in Figs. S(a)-(c) for the duct geometry 
represented by H’/L = 0.25 and fl = 45”. The result 
for the sharp cornered duct is also presented in Fig. 
5(d). The local Nusselt number for the round cornered 
duct takes high values from the reattachment point 
through the peak of the corner, and it takes low values 
on the rear facing facet, while the local Nusselt num- 
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ber for the sharp cornered duct takes high values 
at the reattachment point and decreases from the re- 
attachment point through the peak of the corner and 
changes abruptly at the peak of the corner (Fig. 5(d)). 
The local Nusselt number distribution in the y-direc- 
tion is very sensitive to the rounding of the corners. 

Results for the periodic fully developed Nusselt 
number as a function of the Reynolds number are 
plotted in Fig. 6 with W/L and 8 as curve parameters. 
The Nusselt number is determined using equation (24) 
where the log-mean temperature difference is used. It 
should be noted that the value for the Nusselt number 
for the fully developed straight duct is 7.54 and is 
independent of both the Reynolds and Prandtl num- 
bers. However, it is evident from the governing equa- 
tions that the periodic fully developed Nusselt number 
is a function of the Reynolds number, Prandtl 
number, geometric parameters H’/L and 6. The 
periodic fully developed Nusselt numbers are greater 
than 7.54 depending on the parameters. The results 
for the sharp cornered duct are also presented in 
Fig. 6. The Nusselt number for the round cornered 
duct is 40% lower than that for the sharp cornered 
duct (0 = 45”) at high Reynolds number. 

In appraising the performance of the round cor- 
nered duct configuration relative to the corresponding 
value for a straight duct with interwall spacing (mea- 
sured perpendicular to the walls) H’, comparisons 
will be made for three different constraints [16] : (1) 
identical pumping power PP, (2) identical pressure 
drop per-cycle ApplL, and (3) identical mass flow rate 
A The heat transfer rate from the walls to the fluid 
per-cycle, Q, is obtained by equations (21)-(24) as 
follows : 

xMAv/(-i’+. (25) 

The heat transfer rate ratios for three different con- 

(a) Re=83 (b) 446 (c) 984 (d) a79 

FIG. 5. Local Nusselt numbers for H’/L = 0.25 with 0 = 45” and Re as parameters. 
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FIG. 6. Average Nusselt numbers for a corrugated duct as a 
function of I&. 

straints are plotted as a function of Reynolds number 
in Figs. 7-9 with W/L and 0 as curve parameters. 
These ratios are dete~ined numerically by dividing 

Q for the round cornered duct into corresponding 
values of the straight duct. The results for identical 
pumping power, identical pressure drop per-cycle, and 
identical mass flow rate are shown in Figs. 7-9, respec- 
tively. As seen in the figures, the heat transfer rate 
ratios are greater than one at higher ReynoIds number 
for all cases. The pumping power is equal to the pro- 
duct of the pressure drop and the volume flow given 

by PP z m(Ap/L). In the case of identical pumping 

power, the following relation between the pumping 
power of the round cornered duct and the straight 
duct is given 

ti&, = rti& 

In dimensionless form, it is expressed by 

(26) 

Re,, B,, = Rq B,, (27) 

The following relationship between Reynolds number 
and dimensionless pressure gradient parameter B of 

the straight duct is also given : 

Rcj, = B,,(H’/L)j/6. (28) 

Substituting equation (28) into equation (27). the 
Reynolds number for the straight duct can be 
ob~ined for a pumping power equal to that of the 
round cornered duct as 

Re,, = [(H’/L)3 Re,, B,,/6]‘/*. (29) 

In the case of identical pressure drop per-cycle, the 
Reynolds number of the straight duct can be expressed 

------ &45’ 1 
--- 300 

150 / 

100 Re 500 1000 

FIG. 7. Heat transfer rate ratios Q,,IQ,~ as a function of He,, 
for identical purnpjn~ power. 
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FIG. 8. Heat transfer rate ratios Q,,]Q, as a function of Re,, 
for identical pressure drop per rycie. 

Rq = B,,(H’/L)‘;(i. (30) 

In the case of identical mass flow rate, the Reynolds 
number of the straight duct can be expressed by 

Re,, = Re,,. (31) 

The heat transfer rate ratios for three different con- 
straints are plotted as a function of Reynolds number 
in Figs, lO-“12 with H’/L and 0 as curve parameters. 
These ratios are determined numerically by dividing 
Q for a round cornered duct into the corresponding 
values of the sharo cornered duct. The subscript >> 
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FIG. 

0.8 - * 100 Re 5oo 1000 

9. Heat transfer rate ratios Q,,/Q,, as a function of 
for identical mass flow. 
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100 Re ‘O” 1000 

FIG. 10. Heat transfer rate ratios QJQ,, as a function of 
Re,, for identical pumping power. 

refers to the corrugated duct with sharp corners. The 
results for identical pumping power, identical pressure 
drop per-cycle, and identical mass flow rate are shown 
in Figs. l&12, respectively. As seen in these figures, 
the heat transfer rate ratios are greater than or less 
than one, depending on the value of H'IL and 6 and 
also the specific constraints under consideration. The 
heat transfer rate for the round cornered duct is 20 
and 35% (ma~mum) less than that for the sharp 
cornered duct under identical pumping power and 
identical mass Aow rate, respectively, while it is 20% 
(maximum) greater than that for the sharp cornered 
duct under identical pressure drop per-cycle. 

, 0.06699 

O^ O.,lW 1000 

FIG. I I. Heat transfer rate ratios QJQ, as a function of 
Re,, for identical pressure drop per cycle. 
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FIG. 12. Heat transfer rate ratios Q,JQ,, as a function of 
Re,, for identical mass flow. 

CONCLUDING REMARKS 

Periodic, fully developed heat transfer and fluid 
flow characteristics of the corrugated duct with 
rounded corners using a cosine function approxi- 
mation were obtained by a finite difference technique 
and utilization of a coordinate transformation 
methodology. The main conclusions of the results are 
given below. 

(a) The pressure drop per-cycle for the corrugated 
ducts for both sharp corners and round corners are 
greater than that for the straight duct. The pressure 
drop for the round cornered duct is 80% (maximum) 
less than that for the sharp cornered duct. 

(b) The heat transfer rate for the round cornered 
duct is greater than that for the straight duct under 
identical pumping power and identical mass flow, 
while it is greater than or less than that for the straight 
duct under identical pressure drop. At higher 
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Reynolds number, the heat transfer rate for the 
round cornered duct is greater than that for the 
straight duct under all constraints. 

fc) The heat transfer rate for the round cornered 
duct is greater than or less than that for the sharp 
cornered duct, depending on duct geometry and on the 
constraints. The heat transfer rate for the round cor- 
nered duct is 20 and 35% (maximum) less than that 
for the sharp cornered duct under identical pumping 
power and identical mass flow, respectively, while it 
is 20% (maximum) greater than that for the sharp 
cornered duct under identical pressure drop per cycle. 
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TRANSFERT THERMIQUE ET PERTE DE CHARGE DANS UN TUBE CORRUGUE 
AVEC DES COINS ARRONDIS 

R&sum&On determine numeriquement les caracteristiques dc tmnsfert de chaleur et de pcrtc de charge 
pour un tube corrugue avec des coins arrondis. Les frontieres sent approchees par des fonctions cosinus. 
Les calculs concernent un nombre de Prandtl de 0,7 et un domaine de nombre de Reynolds allant de 100 
a 1000, pour trois angles de corrugation et pour yuatre valeurs du rapport de forme. L’arrondissement des 
coins provoque une diminuti~~n du facfeur dc fr~~ttemcnt et du nombrc de Nusselt. La performance de 
transfert thermique du canal avec des angles arrondis est comparee d un canal rectiligne et i un canal avec 
des coins vifs, pour trois contraintes diff&entes : puissance de pompage don&e, perte de charge donnee, 

debit-masse fixe. Les transferts diminuent ou augmentent suivant les conditions speciliyucs. 

CH,~RAKTERlSTIK DES W~RME~B~RGANGS UND DES DRUCKABFALLS IN 
EINEM W~LLROHR MIT ABGERUNDETEN ECKEN 

Zusammenfassung-Wlrrneiibrrgang und Druckabfall in einem Wellrohrmit abgerundeten Kantcn wurden 
numerisch untersucht. Das Rohrprofil wurde mit einer Cosinus-Funktion angenahert. Fur eine Prandtl- 
Zahl von 0,7 wurden Berechnungen im Reynolds-Zahl-Bereich von 100 bis 1000 ausgeftihrt. wobei jeweils 
drei verschiedene Wellungswinkel und vier geometrische Abmessungsverhaltnisse beriicksichtigt wurden. 
Eine Abrundung der Kanten hatte eine Verminderung des Reibungskoeflizienten und der Nusselt-Zahl zur 
Folge. Der W~rme~bergang in &em Rohr mit abge~ndeten Kanten wurde mit dem tines geraden 
Rohrs und dem eines Rohrs mit scharfen Kanten tuner drei verschiedenen Randbedingu~g~n verglichen: 
konstante Pumpenleistung, konstanter Druckabfall und konstanter Massenstrom. Abhangig von den 

verschiedenen Bedingungen verringerte bzw. vergrogerte sich der Wgrmetibergang. 
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XAPAKTEPHCTHKH TEllJlOlTEPEHOCA II IIEPEIlA&i &4BJIEHHX B KAHAJIE C 
I-OQPHPOBAHHbIMkl CTEHKAMM kl CKPYrJIEHHbIMH Yl-JlAMki 

~~9ncne~ooirpenensKllcxTe~oo6MeH a~e~~~aa~e~K~Ka~~ecr~p~~~aa~~ 

creHKabm w cxp~~eHK~~ ~~~.r~~ Kawina a~KcKM~p~~K x0czaiyco~. Pawem npo- 
BO~KTCB mm wcna FIpamTnn 47 a maria3oHe 3zianemS wicna Peih10~6aca 0~ 100 AO 1000 mff apex 
3aAambIx 3aaseHHir yrna pE*emia H wrarpex sHauemi# omontemiii mopoH. Ckpyrneme yr~ron npw 
BOAHT K ybfeHbweHmo Kozi+&nuieHTaTpetiHn ii wicna HyCCeJtbTa.Temoo6hfeH B KaHaneco crpymea- 

~bmfa yrnaMu CpaBeaBaeTcn c TemOO6MeHOM B npnMoM Katiane, HMeMweM OcTpble yrnar, npK 

cnenymwix ycnoearx: nocToKmible ~omiowb nporasea, nepenw namemix H pacxon. Mmemia- 

HOCTb TeMOO6MeHa yMeHbUXaeTCK HRH )‘BeJlHlrEiBafXCX B 3aBHCHMOCTH OT YCJIOBHii. 
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