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Abstract—Heat transfer and pressure drop responses of a corrugated duct with rounded corners were
determined numerically. The duct boundaries were approximated by a cosine function. Computations were
carried out for a Prandtl number of 0.7, in the Reynolds number range from 100 to 1000, for three assigned
corrugation angles, and for four values of aspect ratios. Rounding of the corners resulted in a decrease of
friction factor and Nusselt number. Heat transfer performance of a duct with rounded corners was
compared to a straight duct and to a duct with sharp corners under three different constraints: fixed
pumping power, fixed pressure drop, and fixed mass flow. The heat transfer rates decreased or increased
depending on the specific conditions.

INTRODUCTION

CORRUGATED ducts are often utilized in the design of
compact heat exchangers because of their efficient heat
exchange capability. Izumi er al. [1, 2] reported
numerical solutions for laminar flow and heat transfer
in a corrugated duct with two right-angle bends and
investigated the effect of bending angle on the heat
transfer and fluid flow characteristics. Amano [3, 4]
also studied corrugated ducts with right-angle bends
numerically for both laminar and turbulent flows and
compared the results with the experimental work by
Izumi et al. [5]. The numerical solutions for cor-
rugated ducts with periodically fully developed flow
and heat transfer were reported by Izumi ez al. [6] and
Amano [7]. Asako and Faghri [8] extended the latter
problem for channels with an arbitrary bend angle by
employing a coordinate transformation methodology
91

With the exception of a recent paper by Sparrow
and Hossfeld {10} who measured pressure drop and
heat transfer rates for a periodically corrugated duct
with rounded corners, there is no single investigation
to study the effect of rounding of duct corners. This
has motivated the present numerical simulation for
periodic fully developed flow under constant wall tem-
perature for a corrugated duct with rounded corners.
Representative results were carried out for a Prandtl
number of 0.7 in the Reynolds number range from

100 to 1000 for three corrugation angles of 15°, 30°,
45° and for four aspect ratios.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The problem considered in this study is schema-
tically shown in Fig. 1(a). As seen in this figure,
the walls which form the duct are infinitely long in the
y-direction. The geometry of the duct is specified by
the cycle length (L), the width of the duct (H’), and
the corrugation angle (6) which is the slope of
the duct boundaries at positions y = L/4 and 3L/4.
The deviation of the left wall from the y-axis §(y) is
expressed as

0(y) = [(L/4) tan B][1 — (2/m) cos 2my/L)]. (1)

The dashed lines in Fig. 1(a) represent the duct bound-
aries with sharp corners. These boundaries coincide
with the approximated cosine boundaries at the posi-
tions y = L/4 and 3L/4.

The fluid flow attains a periodic fully developed
condition sufficiently far from the inlet. The general
concepts of this periodically fully developed flow and
heat transfer are discussed in ref. [11]. In such flows,
the velocity field repeats itself at corresponding axial
stations in successive cycles. The pressure does not
obey the same type of periodicity condition since it
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A,  per-cycle heat transfer surface area

B dimensionless per-cycle pressure
gradient, equation (8)

H'  duct width

local and average heat transfer

coefficients, equation (21)

K thermal conductivity

L axial length of a cycle

] total mass flow rate

Nu, Nu,, local and average Nusselt numbers,
equation (24)

P dimensionless periodic pressure,
equation {8)

p,p°  pressure and periodic pressure

Ap  per-cycle pressure drop

Pr Prandtl number

¢, 0 local heat flux and per-cycle wall heat
transfer rate

Re  Reynolds number, equation (18)

T dimensionless temperature

t, 4, t, temperature, bulk temperature, and
wall temperature

NOMENCLATURE

U.V dimensionless velocity components,
uf(viL), v/{v/L)

X, Y dimensionless transverse and axial
coordinates, x/L, y/L

x,y transverse and axial coordinates.

Greek symbols

B per-cycle pressure gradient

d,A deviation of wall and its dimensionless
form, 6(y)/L

0 corrugation angle

A bulk temperature gradient parameter,

equation {14)
J2 density
G right-hand side of equation ¢12)
P.¥, stream function [= [§ " Vdn]and its
value at the right wall.

Subscripts
3] corrugated duct with rounded corners :
> corrugated duct with sharp corners
i straight duct.

decreases in the y-direction. Therefore, it is expressed
as

px, ¥}y = —fy+px, ) 2)
where f is a constant, defined as
B = {p(x,y)—plx,y+D)]}/L (3)

and p° behaves in a periodic manner from module to
module as

Py =pxy+L)y=pxy+2l)=... 4

For the case of the uniform wall temperature
temperature

boundary condition, the fluid

F16. 1. {a) Schematic diagram of a corrugated duct. (b) Lines
of constant n and £ in the physical domain.

approaches the wall temperature in the fully
developed region. A dimensionless temperature is
defined as

T(K, V) = [Z(X’y) - tw],/(th — 1y ) (5)
where

ly~1t, = j(f — 1, dx_,?; fv dx. (6)

For a periodically thermally developed region, the
dimensionless temperature satisfies the following
relationship :

T, ) =TO.y+1)=T(x,y+20)y= ... (D

Therefore, the fully developed dimensionless tem-
perature field repeats itself at corresponding axial sta-
tions in successive cycles.

The governing equations to be considered are the
continnity, momentum, and energy equations. Con-
stant thermophysical properties are assumed and
natural convection is excluded. The following dimen-
sionless variables are used :

X=x/L, Y=y/L, U=uf(v/L), V=rv/(v/L),
P=p'[p(v/L)’, B=BLjp(v/L)". (8)

Then, upon the introduction of the dimensionless
variables and parameters, the governing equations
take the following forms:

AUIBX + VY =0 (9)
UBUOX + VEU|dY = d2UjX* + 8> UleY* —8PICX
(10)
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UdV[oX+Vov[oY = 8*V/6X?
+8*VjaY*—oP/oY+B (11)
UBT/oX + VOT[0Y = 8*T|6X*+0*T/0Y*+o/Pr
(12)
where
o = [2(0T/0Y)—PrVT]+ T(A*+04/0Y) (13)
and

A= [d{ty—1,)/dY](ts —1). (14)

The terms ¢ and A are periodic parameters arising
from the assumptions of the constant wall tem-
perature boundary condition. These values are deter-
mined as part of the solution process.

To complete the formulation of the problem in the
physical domain, the boundary conditions remain to
be discussed. These are

onthewalls: U=V=0, T=0(=1,). (15

At the inlet and outlet ends of the solution domain,
periodic conditions are imposed.

SOLUTION METHODOLOGY

The solution methodology based on the coordinate
transformation is fully described by one of the authors
[9] and is well documented in earlier papers [8, 12].
Specifically, the X, Y coordinates are transformed into
1, & coordinates by the relationship

n=X-AY), {=Y (16)

where
A(Y) =é(y)/L.

In terms of the new coordinates, the values of n on
both wall boundaries take 0 and H’/L, respectively.
Then, the solution domain is defined by 0 < 4 < H’/L,
0 < ¢ < 1. Lines of constant n and ¢ are illustrated
in Fig. 1(b). The transformed governing differential
equations are integrated over the control volume con-
tained between lines # =1#,,%, and & = ¢,,&,. The
discretized procedure of the integrated equations is
based on the power-law scheme of Patankar [13]. The
pressure and velocities are linked by the SIMPLE
algorithm of Patankar [13], and the discretized equa-
tions are solved by using a line-by-line method [14].
The numerical computations were performed for a
Prandt] number of 0.7 and for 8 = 15°, 30°, 45°. If the
peaks of both the right and left walls with sharp edged
corners lie in the same plane, the width H’ is a function

of @and L as
H' = (L{2)tan@. an

Then the selected values of H’/L range from (tan 6)/4
to tan . Five values of the dimensionless pressure
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gradients B were selected in such a way that the cal-
culated Reynolds numbers are 100, 200, 500, 700, and
1000.

The computations were performed with (18 x 34)
grid points. These grid points were distributed in a
non-uniform manner with higher concentration of
grids close to the corrugated walls. Each interior con-
trol volume contains one grid point, while the bound-
ary adjacent control volume contains two grid points.
Supplementary runs were performed with (26 x 50)
and (34 x 66) grid points to investigate the grid size
effect for the case of H'/L =0.1443 and 6 = 30°.
Three values of the dimensionless pressure gradient B
were selected in such a way that the calculated Rey-
nolds numbers ranged from 100 to 1000. The results
are listed in Table 1. The maximum change in the
Reynolds and Nusselt numbers, respectively, between
the coarse mesh (18 x 34) and the fine mesh (34 x 66)
were within 2 and 7% at identical pressure gradients.
Thus, the coarse mesh (18 x 34) was chosen to main-
tain relatively moderate computer costs.

Attention will now be directed to the calculation of
the Reynolds number which will be defined as

Re =2m/u (18)
where the mass flow rate m is given by
H'/L
= .UJ; Vy_odn. (19

Another quantity of interest is the calculation of the
pressure drop for one cycle. It is of practical interest
to compare this quantity with the corresponding value
obtained for the straight duct (plane Poiseuille flow)
with width H’. This ratio can be expressed as follows :

(Ap/L)y,[(AP/L), = [B/(6Re)I(H'/L)>.  (20)

Finally, the local heat transfer coefficient 4 and cycle
average heat transfer coefficient 4, will be defined as

h=q/(t.—1)
hm = Q/Aw(zw_tb)

where g is the local heat flux, 4, is the per-cycle
transfer surface area, Q is the heat transfer rate from
both walls to the fluid per cycle, and ¢, —¢, is the
average bulk-to-wall temperature difference. The log—
mean temperature difference is expressed as

ly—t = (tw—tb),,:(,(l—'y)/(—ﬁl/ld}’) (22)

where

@D

1

y= expj AdY. 3)
0

The Nusselt number expressions were obtained by

assuming a log-mean temperature difference as fol-
lows:
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Table 1.
18x 34
B Re Nity,
360000 129.3 7.994
800000 2722 8.079
4500 000 1062

10.03

1049
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Grid size effect on Reynolds number and average Nusselt number

26 x50 34 x 66

Re Nu, Re Nu,,
128.0 8.041 1275 8.057
269.9 8.087 269.0 8.083

9.593

1041 9.298

{a} Re=83 {8} 174 {c} 448

{d) 984 {e} 879

Fi. 2. Streamline diagram for H/L =< 0.25 with # = 45" and Re as parameters.

Nu = h(2H')/K
= [1+(0AOYY1*°(2H'|L)(@T/on)
Ne, = b QH YK

= —(2L/4,) f AdY(H'/L) [(Re Pr/2)

HjLL
- L umafganyﬂ,dq} (24)

RESULTS AND DISCUSSION

The streamline maps obtained from the solutions
are presented in Fig. 2. These figures are for
H'JL =0.25 and 8 = 45°, and in the Reynolds num-
ber range from about 80 to 1000. Results for the sharp
cornered duct are also presented in Fig. 2(e). The
contour interval AW/W,, is chosen as 0.1 for the core
flow. The values of the contour line W)W, on the left
and on the right walls are 0 and 1, respectively. The
contour interval AW/¥,, in the separation bubble is
0.01. No separation bubble can be seen at low Rey-
nolds number Re < 150 (Fig. 2(a)). For Re > 150,
a separation bubble can be seen at the valley of the
corner. As expected, the separation bubble increases
in length with Reynolds number because the fluid is
unable to turn sharply to follow the wall at higher
Reynolds number (Fig. 2(d)). Although one sep-
aration bubble can be seen for the round cornered
duct, two separation bubbles can be seen at the valley
of the sharp cornered duct (Fig. 2(e)).

Representative results for the pressure drop ratios
are plotted as a function of Reynolds number in Fig.

3 with H'/L and 0 as curve parameters. These ratios
are determined numerically by dividing Ap of the
corrugated duct into the corresponding values of the
straight duct (plane Poiseuille flow) with an equal
width H'. For this case, the mass flow rate in the
corrugated duct and in the straight duct is the same.
The dashed lines in Fig. 3 indicate the results for the
sharp cornered duct. The pressure drop ratios for both
the sharp and round cornered ducts are greater than
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Fic. 3. Comparison of pressure drops for corrugated and
straight ducts.
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E O DATA OF NISHIMURA
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~
= 9=45°, H'/L=0.5
< 10
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= -
8=30°,H' /L=0.4186
1 | | I N I |

500 1000

Re
Fi6. 4. Comparison of pressure drops with experimental
data.

one, as expected. The pressure drop for the round
cornered duct is less than that of the sharp cornered
duct. It is noteworthy that the pressure drop for the
round cornered duct of § = 45° is 80% (maximum)
less than that of the sharp cornered duct at Re = 1000.

The experimental data of Nishimura et al. [15] are
compared with the present computation in Fig. 4. The
experimental data are for a duct with H'/L = 0.4643
and 8 = 38.2° and the computational results are for
ducts of H’/L = 0.5, 8 = 45° and for H’/L = 0.4186,
0 = 30°. Even though direct comparison of the experi-
mental and numerical results are not possible but the
present computation is consistent with the experi-
ment.

Representative results for the local Nusselt number
are presented in Figs. 5(a)—(c) for the duct geometry
represented by H’/L = 0.25 and 6 = 45°. The result
for the sharp cornered duct is also presented in Fig.
5(d). The local Nusselt number for the round cornered
duct takes high values from the reattachment point
through the peak of the corner, and it takes low values
on the rear facing facet, while the local Nusselt num-
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ber for the sharp cornered duct takes high values
at the reattachment point and decreases from the re-
attachment point through the peak of the corner and
changes abruptly at the peak of the corner (Fig. 5(d)).
The local Nusselt number distribution in the y-direc-
tion is very sensitive to the rounding of the corners.

Results for the periodic fully developed Nusselt
number as a function of the Reynolds number are
plotted in Fig. 6 with H'/L and 0 as curve parameters.
The Nusselt number is determined using equation (24)
where the log-mean temperature difference is used. It
should be noted that the value for the Nusselt number
for the fully developed straight duct is 7.54 and is
independent of both the Reynolds and Prandtl num-
bers. However, it is evident from the governing equa-
tions that the periodic fully developed Nusselt number
is a function of the Reynolds number, Prandtl
number, geometric parameters H’/L and 6. The
periodic fully developed Nusselt numbers are greater
than 7.54 depending on the parameters. The results
for the sharp cornered duct are also presented in
Fig. 6. The Nusselt number for the round cornered
duct is 40% lower than that for the sharp cornered
duct (6 = 45°) at high Reynolds number.

In appraising the performance of the round cor-
nered duct configuration relative to the corresponding
value for a straight duct with interwall spacing (mea-
sured perpendicular to the walls) H’, comparisons
will be made for three different constraints [16]: (1)
identical pumping power PP, (2) identical pressure
drop per-cycle Ap/L, and (3) identical mass flow rate
ri. The heat transfer rate from the walls to the fluid
per-cycle, O, is obtained by equations (21)—(24) as
follows :

Q = (Nuy K2H")(ty —1y) y=o

x(l——y)Aw/<— Jlid

The heat transfer rate ratios for three different con-

Y). 25)

> —
0 ] f 1 N |
0 10 20 0 10 20 0 10 20 30 O 20 40 60 80 100
Nu Nu Nu Nu
(a) Re=83 (b) 446 (c) 984 (d) 879

FiG. 5. Local Nusselt numbers for H’/L = 0.25 with § = 45° and Re as parameters.
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FiG. 6. Average Nusselt numbers for a corrugated duct as a
function of Re.

straints are plotted as a function of Reynolds number
in Figs. 7-9 with H'/L and # as curve parameters.
These ratios are determined numerically by dividing
Q for the round cornered duct into corresponding
values of the straight duct. The results for identical
pumping power, identical pressure drop per-cycle, and
identical mass flow rate are shown in Figs. 7-9, respec-
tively. As seen in the figures, the heat transfer rate
ratios are greater than one at higher Reynolds number
for all cases. The pumping power is equal to the pro-
duct of the pressure drop and the volume flow given
by PP = m(Ap/L). In the case of identical pumping
power, the following relation between the pumping
power of the round cornered duct and the straight
duct is given

mpy, = mf,. (26)
In dimensionless form, it is expressed by
Re), Byy = Re; B,. 27

The following relationship between Reynolds number
and dimensionless pressure gradient parameter B of
the straight duct is also given:

Re, = B,(H'|L1)*/6. (28)

Substituting equation (28) into equation (27), the
Reynolds number for the straight duct can be
obtained for a pumping power equal to that of the
round cornered duct as

Re, = [(H'/L)" Re,, B,,/6]".

In the case of identical pressure drop per-cycle, the
Reynolds number of the straight duct can be expressed
by

29)
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FiG. 8. Heat transfer rate ratios 0,/Q, as a function of Re,
for identical pressure drop per cycle.

0.1340

(-
1000

Re, = By, (H'[L)"/6. (30)

In the case of identical mass flow rate, the Reynolds
number of the straight duct can be expressed by

Re, = Re,,. 30

The heat transfer rate ratios for three different con-
straints are plotted as a function of Reynolds number
in Figs. 10~12 with H’/L and 0 as curve parameters.
These ratios are determined numerically by dividing
Q for a round cornered duct into the corresponding
values of the sharp cornered duct. The subscript >
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1 7 \0.2679

0.9k 0.06699 0.1340

0.8 | | | S I T |
100 re 500 1000

F1G. 9. Heat transfer rate ratios (/0 as a function of Re),
for identical mass flow.

o

(Y2}

T o1

=z

1.0

0.9

-~ H'/L=0.25 -

~0-8F" "0.3333 <

< 0.23 0.5774 T
0.4186 i
0.2887 1A
0.1443 1.0 &

- 0 3.

T 1.2 [6=157 0.8 &

= 15 0.06699

Al 0.1340

< 1.0 0.2679

e

C. 0.9

STo.8 ] A B B A A

100 Re 500 1000

Frc. 10. Heat transfer rate ratios 0 /@,, as a function of
Re,, for identical pumping power.

refers to the corrugated duct with sharp corners. The
results for identical pumping power, identical pressure
drop per-cycle, and identical mass flow rate are shown
in Figs. 10-12, respectively. As seen in these figures,
the heat transfer rate ratios are greater than or less
than one, depending on the value of H'/L and 6 and
also the specific constraints under consideration. The
heat transfer rate for the round cornered duct is 20
and 35% (maximum) less than that for the sharp
cornered duct under identical pumping power and
identical mass flow rate, respectively, while it is 20%
(maximum} greater than that for the sharp cornered
duct under identical pressure drop per-cycle.
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Fi16. 12. Heat transfer rate ratios Q,,/Q,, as a function of
Re, for identical mass flow.

CONCLUDING REMARKS

Periodic, fully developed heat transfer and fluid
flow characteristics of the corrugated duct with
rounded corners using a cosine function approxi-
mation were obtained by a finite difference technique
and utilization of a coordinate transformation
methodology. The main conclusions of the results are
given below.

(a) The pressure drop per-cycle for the corrugated
ducts for both sharp corners and round corners are
greater than that for the straight duct. The pressure
drop for the round cornered duct is 80% (maximum)
less than that for the sharp cornered duct.

(b) The heat transfer rate for the round cornered
duct is greater than that for the straight duct under
identical pumping power and identical mass flow,
while it is greater than or less than that for the straight
duct under identical pressure drop. At higher
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Reynolds number, the heat transfer rate for the
round cornered duct is greater than that for the
straight duct under all constraints,

(c) The heat transfer rate for the round cornered
duct is greater than or less than that for the sharp
cornered duct, depending on duct geometry and on the
constraints. The heat transfer rate for the round cor-
nered duct is 20 and 35% (maximum) less than that
for the sharp cornered duct under identical pumping
power and identical mass flow, respectively, while it
is 20% (maximum) greater than that for the sharp
cornered duct under identical pressure drop per cycle.
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TRANSFERT THERMIQUE ET PERTE DE CHARGE DANS UN TUBE CORRUGUE
AVEC DES COINS ARRONDIS

Résumé—On détermine numériquement les caractéristiques de transfert de chaleur et de perte de charge
pour un tube corrugué avec des coins arrondis, Les frontiéres sont approchées par des fonctions cosinus.
Les calculs concernent un nombre de Prandtl de 0,7 et un domaine de nombre de Reynolds allant de 100
a 1000, pour trois angles de corrugation et pour quatre valeurs du rapport de forme. L’arrondissement des
coinsg provoque une diminution du facteur de frottement et du nombre de Nusselt. La performance de
transfert thermique du canal avec des angles arrondis est comparée a un canal rectiligne et 4 un canal avec
des coins vifs, pour trois contraintes différentes: puissance de pompage donnée, perte de charge donnée,
débit-masse fixé. Les transferts diminuent ou augmentent suivant les conditions spécifiques.

CHARAKTERISTIK DES WARMEUBERGANGS UND DES DRUCKABFALLS IN
EINEM WELLROHR MIT ABGERUNDETEN ECKEN

Zusammenfassung— Wirmeiibergang und Druckabfall in einem Wellrohr mit abgerundeten Kanten wurden
numerisch untersucht. Das Rohrprofil wurde mit einer Cosinus-Funktion angendhert. Fiir eine Prandti-
Zahl von 0,7 wurden Berechnungen im Reynolds-Zahl-Bereich von 100 bis 1000 ausgefiihrt. wobei jeweils
drei verschiedene Wellungswinkel und vier geometrische Abmessungsverhdltnisse beriicksichtigt wurden.
Eine Abrundung der Kanten hatie eine Verminderung des Reibungskoeffizienten und der Nusselt-Zah! zur
Folge. Der Wirmeiibergang in einem Rohr mit abgerundeten Kanten wurde mit dem cines geraden
Rohrs und dem eines Rohrs mit scharfen Kanten unter drei verschiedenen Randbedingungen verglichen:
konstante Pumpenleistung, konstanter Druckabfall und konstanter Massenstrom. Abhiingig von den
verschiedenen Bedingungen verringerte bzw. vergréBerte sich der Wiarmetibergang.



Heat transfer and pressure drop characteristics

XAPAKTEPHCTHKHU TEIJIONEPEHOCA U INEPEINAIA JABJIEHHUS B KAHAJE C
TroOePUPOBAHHBIMH CTEHKAMH M CKPYTJIEHHBIMMU YIJIAMHA

Annoraims—YHCICHHO ONPEACNAIOTCH TeMI00OMEH H nepenaj KaBICHHA B KAHANE C rOQPUPOBAHHLIME
CTEHKaMH H CKPYTJICHHBIMHA yriaMu. I'pamuus xanajna annpoKCHMHPYIOTCH KocEHycoMm. Pacuernt mpo-
soaaTcs s wucna Mpanarna 0,7 8 aranasone 3pavennit wncna Peitnonsaca or 100 no 1000 mas Tpex
3a]aHHBIX 3HAYCHNH yraa pudIeHAs W YeThIpeX 3HA4YCHWH OTHOLIEHHH cTOpOH, CKpyrileHHe YIIOB npH-
BOJIMT K YMEHbIUCHHIO KodbduienTa TpeHns n yucna Hyccenbra. Teruroofmen B KaHase co CKpYIJieH-
HbIMH YTJIAMH CPaBHHBAeTCS C TEINIOOOMEHOM B NPAMOM KaHalie, HMEIOIUEM OCTDPBIE YIJlki, IPH
CHEAYIOIMX YC/NOBHAX: NOCTOAHHBIE MOUIHOCThL HPOKAYKH, Nepenaj NaBNeHus M pacxold. HMaTeHcHs-
HOCTh TEIJI00OMEHa YMEHBIIACTCSA HAM YBETHYNBACTCS B 3aBHCHMOCTH OT YCJIOBHIL.
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